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The soil-water characteristic curve can be used to estimate various parameters used to describe unsaturated soil
behaviour.  A general equation for the soil-water characteristic curve is proposed.  A nonlinear, least-squares compu-
ter program is used to determine the best-fit parameters for experimental data presented in the literature.  The
equation is based on the assumption that the shape of the soil-water characteristic curve is dependent upon the pore-
size distribution of the soil (i.e., the desaturation is a function of the pore-size distribution).  The equation has the
form of an integrated frequency distribution curve.  The equation provides a good fit for sand, silt, and clay soils over
the entire suction range from 0 to 106 kPa.

Key Words: soil-water characteristic curve, pore-size distribution, nonlinear curve fitting, soil suction, water
content.

La courbe caractéristique sol-eau peut être utilisée pour estimer divers paramètres décrivant le compotement
d’un sol non saturé. On propose ici une équation pour cette courbe caractéristique sol-eau. Un programme non
linéaire, par moindres carrés, est utilisé pour déterminer les paramètres qui permettent d’approcher au mieux les
données expérimentales recueillies dans la littérature. L’équation est basée sur l’hypothèse que la forme de la
courbe caractéristique sol-eau dépend de la répartition de la taille des pores du sol (à savoir que la perte de
saturation est une fonction de cette répartition). L’équation a la forme d’une intégrale de courbe de répartition de
fréquences. Cette équation permet un bon ajustement pour les sols sableux, silteux et argileux sur toute la gamme
des valeurs de succion, de 0 à 106 kPa.

Mots clés : courbe caractéristique sol-eau, répartition de la taille des pores, ajustement non linéaire, succion
dans le sol, teneur en eau.

[Traduit par la rédaction]
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Introduction

A theoretical framework for unsaturated soil mechanics
has been established over the past two decades.  The con-
stitutive equations for volume change, shear strength. and
flow through unsaturated soil have become generally accepted
in geotechnical engineering (Fredlund and Rahardjo 1993a).
The measurement of soil parameters for the unsaturated soil
constitutive models, however, remains a demanding labo-
ratory process.  For most practical problems, it has been
found that approximate soil properties are adequate for
analysis (Papagiannakis and Fredlund 1984).  Hence, empiri-
cal procedures to estimate unsaturated soil-parameters would
be valuable.

Laboratory studies have shown that there is a relationship
between the soil-water characteristic curve for a particular soil
and the properties of the unsaturated soil (Fredlund and
Rahardjo 1993b).  For example, it has become an accept-
able procedure to predict empirically the permeability func-
tion for an unsaturated soil by using the saturated coeffi-
cient of permeability and the soil-water characteristic curve
(Marshall 1958; Mualem 1986; University of Saskatchewan
1984).  Similar procedures have been suggested for the shear
strength properties of an unsaturated soil (Fredlund and
Rahardjo 1993b).  Since the soil-water characteristic curve
is used as the basis for the prediction of other unsaturated
soil parameters, such as the permeability and shear-strength
functions, it is important to have a reasonably accurate char-
acterization of the soil-water characteristic curve.

This paper reviews the forms of mathematical equations
that have been suggested to characterize the soil-water char-
acteristic curve.  It appears that none of the suggested equa-
tions accurately fit laboratory data over the entire suction

range.  This paper proposes a new equation that can be used
to fit laboratory data over the entire soil suction range.
A mathematical basis for the equation is described and a
best-fit procedure is outlined to obtain the parameters for
the equation.

Definitions1

The soil-water characteristic curve for a soil is defined
as the relationship between water content and suction for
the soil (Williams 1982).  The water content defines the
amount of water contained within the pores of the soil.  In soil
science, volumetric water content, θ, is most commonly used.
In geotechnical engineering practice, gravimetric water con-
tent, w, which is the ratio of the mass of water to the mass of
solids, is most commonly used.  The degree of saturation, S,
is another term commonly used to indicate the percent-
age of the voids that are filled with water.  The above vari-
ables have also been used in a normalized form where the
water contents are referenced to a residual water content
(or to zero water content).

The suction may be either the matric suction (also known
as capillary pressure) of the soil (i.e., u

a
 - u

w
, where u

a
 is

the pore-air pressure and u
w
 is the pore-water pressure) or

total suction (i.e., matric plus osmotic suction).  At high suc-

1There are several soil terms that are used interchangeably in
the literature.  The terminology used in the paper is most consist-
ent with that found in the geotechnical literature.  Other terms
are used in the geo-environmental, petroleum, and some of the soil
science disciplines.  Some of these equivalences are as follows:
matric suction ≡ capillary pressure, air-entry value ≡ displace-
ment pressure, and soil-water characteristic curve ≡ suction --
volumetic water content curve.
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tions (i.e., greater than about 1500 kPa), matric suction and
total suction can generally be assumed to be equivalent.

As a result of the different terminologies used, the soil-
water characteristic curves have taken on numerous forms.
It is suggested that the term soil-water characteristic curve
be used to represent the relationship between volumetric
water content, θ, and matric suction.  Volumetric water content
test results in the low suction range are often presented
using an arithmetic scale.  Soil-water characteristic curves
over the entire suction range are often plotted using a loga-
rithmic scale.

Figure 1 shows a typical plot of a soil-water characteristic
curve for a silty soil, along with some of its key characteris-
tics.  The air-entry value of the soil (i.e., bubbling pressure)
is the matric suction where air starts to enter the largest pores
in the soil.  The residual water content is the water content
where a large suction change is required to remove addi-
tional water from the soil.  This definition is vague and an
empirical procedure for its quantification would be useful.
A consistent way to define the residual water content is shown
in Fig. 1. A tangent line is drawn from the inflection point.
The curve in the high-suction range can be approximated by
another line.  The residual water content θ

r
, can be approxi-

mated as the ordinate of the point at which the two lines
intersect (Fig. 1).  The total suction corresponding to zero
water content appears to be essentially the same for all types
of soils.  A value slightly below 106 kPa has been experi-
mentally supported for a variety of soils (Croney and
Coleman 1961).  This value is also supported by thermody-
namic considerations (Richards 1965).  In other words, there
is a maximum total suction value corresponding to a zero
relative humidity in any porous medium.

The main curve shown in Fig. 1 is a desorption curve.  The
adsorption curve differs from the desorption curve as a re-
sult of hysteresis.  The end point of the adsorption curve
may differ from the starting point of the desorption curve
because of air entrapment in the soil.  Both curves have a
similar form; however, this paper primarily considers the
desorption curve.

Typica l  so i l -water  character is t ic  curves ( i .e . ,
desorption curves) for different soils are shown in Fig. 2.
The saturated water content, θ

s
, and the air-entry value or

bubbling pressure, (u
a
 - u

w
)

b
, generally increase with the plas-

ticity of the soil.  Other factors such as stress history also
affect the shape of the soil-water characteristic curves.

Literature review

Numerous empirical equations have been proposed to
simulate the soil-water characteristic curve.  Among the ear-
liest is an equation proposed by Brooks and Corey (1964).
It is in the form of a power-law relationship:

[1] Θ =








ψ
ψ

λ
b

where:
Θ  = normalized (or dimensionless) water content (i.e.,
Θ = (θ - θ

r
)/(θ

s
 - θ

r
), where θ

s
 and θ

r
 are the saturated

and residual volumetric water contents, respectively),
ψ  = suction,
ψ

b
 = air-entry value, and

λ  = pore-size distribution index.
The degree of saturation, S, has also been used in place of
the normalized water content.  Equation [1] has been verified
through several  studies (Campbel l  1974; Clapp and
Hornberger 1978, Gardner et al. 1970a, 1970b; Rogowski
1971; Williams et al. 1983; McCuen et al. 1981).

The following linear relationship between the logarithm of
volumetric water content and the logarithm of suction was
used by Williams et al. (1983) to describe the soil-water
characteristic curve of many soils in Australia.

[2] ln lnψ θ= +a b1 1

where: a
1
 and b

1
 = curve-fitting parameters.

McKee and Bumb (1984) suggested an exponential func-
tion for the relationship between the normalized water con-
tent and suction.  This has been referred to as the Boltzmann
distribution:

[3] Θ = − −e b( )/ψ a2 2

where: a
2
 and b

2
 = curve-fitting parameters.

Equations [1] and [3] have been found to be valid for
suction values greater than the air-entry value of the soil.
The equations are not valid near maximum desaturation or
under fully saturated conditions.  To remedy this condition,
McKee and Bumb (1987) and Bumb (1987) suggested the fol-
lowing relationship:

[4] Θ =
+ −

1

1 e( )/ψ a3 b3

where: a
3
 and b

3
 = curve-fitting parameters. This equation

gives a better approximation in the low suction range.  The

FIG. 1. Typical soil-water characteristic for a silty soil FIG. 2. Soil-water characteristic curves for sandy soil, a silty
soil, and a clayey soil.
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equation is not suitable in the high suction range, since the
curve drops exponentially to zero at high suction values.

Equation [1] implies that there is a sharp discontinuity
in suction near saturation.  Although some coarse-grained
sands may have a rapid change in suction at low suctions,
most soils, particularly medium and fine textured soils,
show a gradual curvature in the air-entry region near satu-
ration.  A modification of Eq. [1] was suggested by Roger and
Hornberger (1978) to account for gradual air entry.  In the case
where the volumetric water content is referenced to zero
water content and the normalized volumetric water content,
Θ, (i.e., θ/θ

s
), is plotted as the abscissa, the general soil-

water characteristic plot has an inflection point where the
slope, dψ/dΘ, changes from an increasing value to a decreas-
ing value as Θ decreases.  The inflection point is assigned the
coordinates (Θ

i
, ψ

i
), and the interval Θ

i
 ≤ Θ ≤ 1 can be

described by a parabola:

[5] ψ = − − −a b4 4 1( )( )Θ Θ
where a

4
 and b

4
 = curve-fitting parameters.  The parameters

a
4
 and b

4
 are obtained by forcing Eq. [5] through the two points

(Θ
i, 
ψ

i
) and (1, 0).  The slopes of both Eq. [1] and Eq. [5] are equal

at the inflection point.
Another frequently used form for the relationship between

suction and the normalized water content was given by
van Genuchten (1980):

[6] Θ =
+











1

1 ( )p n

m

ψ
where p, n, and m = three different soil parameters.  This form
of the equation gives more flexibility than the previous
equations described.  In an attempt to obtain a closed-form
expression for hydraulic conductivity, van Genuchten (1980)
related m and n through the equation m = (1 - 1/n).  This,
however, reduces the flexibility of Eq. [6].  More accurate results
can be obtained by leaving m and n parameters with no
fixed relationship.

Gardner (1958) proposed an equation for the perme-
ability function.  The equation emulates the soil-water char-
acteristic curve and can be visualized as a special case of Eq. [6]:

[7] Θ =
+

1

1 q nψ
where:

q is a curve-fitting parameter related to the air-entry value
of the soil, and
n is a curve-fitting parameter related to the slope at the
inflection point on the soil-water characteristic curve.

Theoretical basis for the shape of the soil-water
characteristic curve

The equations proposed in the research literature are
empirical in nature.  Each equation appears to apply for a
particular group of soils.  There are other equations of slightly
differing forms that could be tested to assess their fit with
experimental data.  For example, the soil-water characteris-
tic curve appears to have the form of the right-hand side
of a normal-distribution curve.  Therefore, the following
equation can be used to approximate the soil-water charac-
teristic curve:

[8] Θ = −a (b5 )m

5 e ψ

where a
5
, b

5
, and m = curve-fitting parameters. Equation [8]

is not suitable as a general form, although it might apply for some
soils over a limited range of suction values.

To establish a theoretical basis for the soil-water characteristic
curve, let us consider the pore-size distribution curve for the soil.
The soil may be regarded as a set of interconnected pores that are
randomly distributed.  The pores are characterized by a pore
radius, r, and described by a function f(r), where f(r) dr is the
relative volume of pores of radius r to (r + dr).  In other words,
f(r) is the density of pore volume corresponding to radius r. Since
f(r) dr is the contribution of the pores of radius r to (r + dr) that are
filled with water, the volumetric water content can be expressed as:

[9]     θ ( ) ( )dR f r r
R min

R

= ∫

where:
θ (R) is volumetric water content when all the pores with
radius less than or equal to R are filled with water, and
R

min
is minimum pore radius in the soil.

Let R
max

 denote the maximum pore radius.  Then, for the
saturated case:
[10]      θ θ( )Rmax s=
The capillary law states that there is an inverse relationship between
matric suction and the radius of curvature of the air-water interface.
In other words, the air-water interface bears an inverse relationship
to the pore size being desaturated at a particular suction:

[11]      r
C=
ψ

where C = (2T cosϕ), a constant, where T = surface tension
of water, and ϕ is angle of contact between water and soil.
Two particular suction conditions can be defined as follows:

[12]     ψ max

min

= C

R
and

[13]     ψ aev

C

R
=

max

where:
ψ

max
 = the suction value corresponding to the minimum

pore radius, and
ψ

aev
 = the air-entry suction value of the soil.

Using the capillary law, Eq. [9] can be expressed in terms of
suction:

[14]     θ ψ
ψ

ψ

ψ

ψ

( )
max

max

= 











= 



∫ ∫f

C

h

C

h
f

C

h

C

h
hd d

2

where h is variable of integration, representing suction.
Equation [14] is the general form describing the relation-
ship between volumetric water content and suction.  If the
pore-size distribution, f(r), of a soil is known, the soil-water
characteristic curve can be uniquely determined by Eq. [14].
Several special cases are as follows:

(1)  Case of a constant pore size function - The pore sizes are
uniformly distributed, that is, f(r) = A, where A is a constant.  It
follows, from Eq. [14] that:

[15]    θ ψ
ψ ψ ψψ

ψ

( )
max

max

= = −






 = −∫

AC

h
h AC

B
D

2

1 1
d
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where B  = AC, a constant, and D = AC/ψ
max

, a constant.
(2)  Case where pore-size function varies inversely as r 2  - For

the case of f(r) = A/r 2, the relationship between volumetric water
content and suction is:

[16]     θ ψ ψ
ψ

ψ

( )
max

= = −∫
Ah

C

C

h
h B D

2

2 2
d

where B = Aψ
max

/C, a constant, and D = A/C, a constant.  Equation
[16] represents a linear variation in the pore sizes.  In other words,
there is a linear relationship between volumetric water content and
suction.

(3)  Case where pore-size function varies inversely as r(m + 1)

- For the case of f(r) = A/r(m+1), where m is an integer, the
relationship between volumetric water content and suction is:

[17]     θ ψ ψ
ψ

ψ

( )
max

= = −
+

+∫
Ah

C

C

h
h B D

m

m

m
1

1 2
d

where B = A(ψ
max

)m/(mC m), a constant, and D = A/(mC m), a con-
stant.  The power-law relationship (i.e., Eq. [1]) proposed by
Brooks and Corey (1964) is simply a special case of Eq. [17].  In
other words, the Brooks and Corey (1964) power-law relationship
is valid only when the pore-size distribution is close to the distri-
bution f(r) = A/r m+1.

To describe the soil-water characteristic curve over the entire
suction range from 0 to 106 kPa, volumetric water content is refer-
enced to zero water content (otherwise, the normalized water con-
tent becomes negative if θ is less than θ

r
).  In this case, the nor-

malized water content Θ becomes θ/θ
s
.  Equation [14] suggests

that the following integration form can be used as a general form
to approximate the soil-water characteristic curve:

[18] θ ψ θ
ψ

( )=
∞

∫s f h h( )d

where f(h) is pore-size distribution as a function of suction.
Equation [18] will generally produce a non-symmetrical S-
shaped curve.  Several special cases are as follows.

(1)  Case of a normal distribution
Let us assume that f(h) is a normal distribution.  That is:

[19] f h h( ) e= − −1

2

2 2 2

π σ
µ σ( ) /

where µ = mean value of the distribution of f(h), and σ = standard
deviation of the distribution of f(h).  The soil-water characteristic
curve defined by Eq. [18] can be expressed as follows:

[20]

where:

erfc(x) = complement of the error function erf(x).  Equation
[20] describes a symmetrical S-shaped curve.  Therefore, if
the pore-size distribution of a soil can be approximated by a
normal distribution, the soil-water characteristic curve of the
soil will be close to a symmetrical S-shaped curve, and Eq.
[20] can be used as a model to describe this relationship.

The two fitting parameters (i.e., the mean value, µ, and the
standard deviation, σ) in Eq. [20] are related to the air-entry value
of the soil and the slope at the inflection point on the soil-water
characteristic curve.  If the slope at the inflection point is s and the
air-entry value is ψ

aev
, then the standard deviation, σ, can be

written as:

[21]     σ
θ
π

= s

s2

and the mean value, µ, can be calculated as:

[22]     µ ψ θ= +aev
s

s2

(2)  Case of a gamma distribution

Consider the case of a gamma-type distribution for the function
f(r).  That is, f(h) takes the following form:

[23]     f h
h

h
h

( ) ( )
, , ,

,

/

= > ≤ ≤ ∞





− −α β

αβ α
α β

1

0 0

0

e

elsewhere
Γ

where:
Γ ( )α α= − −

∞

∫ h e hh1

0
d

In this case, the soil-water characteristic curve defined by Eq. [18]
has a smaller air-entry value, a steeper slope near saturation, and a
gentler slope near the residual water content.  In the special case
when α is an integer, the soil-water characteristic curve defined
by Eq. [18] becomes:

[24]

For α = 1, the gamma distribution becomes an exponential distri-
bution:

[25]     f h
e hh

( )
, ,

,

/

= > ≤ < ∞





−1
0 0

0
β

ββ

elsewhere

and the soil-water characteristic curve defined by Eq. [18] can be
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








 −=

=

=

∫

∫
∞

−

−

∞

σ
µψθ

π
θ

θψθ

σµψ

ψ

22

de
2

2

 d)()(

2/)(

2

erfc

y

hhf

s

ys

s

∫

∫
∞

−

∞
−

−=−=

=

0

de
2

1)(1

de
2

)(

2

2

yxerf

yxerfc

y

x

y

π

π

∑

∫

∫

−

=

−

∞
−−

∞ −−

=

Γ
=

Γ
=

1

0

/

/

1

/1

!

e

de
)(

d
)(

e
)(

α βψ

βψ

α

ψ
α

βα

β
ψθ

α
θ

αβ
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i
i

i

s

hs

h

s

i
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written as:

[26] θ ψ θ ψ β( ) e= −
s

/

Note that Eq. [26] has the same form as Eq. [3], which was used
by McKee and Bumb (1984) to describe the soil-water character-
istic curve.  Therefore, Eq. [3] gives the best results if the pore-
size distribution of the soil is close to a gamma distribution.

(3)  Case of a beta distribution
Consider the case of a beta distribution for the function f(r):

[27] f h
h h

B
h

( ) ,
, , ,

,
=

− > ≤ ≤





− −α β

α β
α β

1 11
0 0 1

0

( )
( )

elsewhere

where:

B h h h( ) ( ) d
( ) ( )
( )

α β α β
α β

α β, = − =
+

− −∫ 1 1

0

1

1
Γ Γ
Γ

In this case, the soil-water characteristic curve given by Eq. [18]
has greater flexibility.  For α equal to β, Eq. [18] generates a
symmetrical S-shaped curve.  For α greater than β, the curve is
non-symmetrical and has a higher air-entry value, a gentler slope
near saturation, and a steeper slope near the residual water con-
tent.  For α less than β, the curve has a smaller air-entry value, a
steeper slope near saturation, and a gentler slope near the residual
water content.  In the case when α and β are integers, the soil-
water characteristic curve defined by Eq. [18] and Eq. [27] is re-
lated to the binomial probability function as follows (Mendenhall
et al. 1981):

[28]

Equation [28] has a form similar to that of Eq. [5] suggested by
Roger and Homberger (1978), which was used to account for a
gradual air entry.  Note, that defining r over the interval (0, 1)
does not restrict its use.  The beta density function can be applied
to any interval by translation and a change in the scale.

Proposal for a new equation

The pore-size distribution of Eq. [6] can be written as follows:

[29]

[ ]
f

mnp p

p

n

n m
( )

( )

( )
ψ ψ

ψ
=

+

−

+

1

1
1

Figure 3 shows a sample probability distribution for Eq. [29] along
with its integration (i.e., Eq. [6]).  It can be seen that the integra-
tion drops to zero over a narrow suction range.  Therefore, Eq. [6]
is not suitable in the high suction region.  Experimental data show
that after the residual water content, the plot should decrease lin-
early to a value of about 106 kPa (Croney and Coleman 1961).  To
describe the soil-water characteristic curve more accurately, the
following distribution is suggested:

[30]
[ ] [ ]{ }

f
mn a

a a a

n

n n
m( )

( / )

( / ) ( / )
ψ ψ

ψ ψ
=

+ +

−

+

1

1

e log e

Equation [30] and its integration form are shown in Fig. 4 for the
same set of parameters (i.e., a = 1/p, n, m).  This distribution func-
tion drops more slowly than Eq. [29] as ψ increases and, there-
fore, Eq. [30] produces a nonsymmetrical curve that is closer to
the experimental data.

Integrating Eq. [30] using Eq. [18] gives the following rela-
tionship between volumetric water content and suction:

[31]
[ ]θ θ

ψ
=

+












s n

m

a

1

ln e ( / )

Figures 5 to 7 show the effect of varying the three parameters
a, n, and m on the shape of the soil-water characteristic

FIG. 3. A sample distribution using [29] and its integration (eg.
[6]).

FIG. 4. A sample distribution using [30] and its integration.

FIG. 5. Sample plots of [31] with n = 2 and m = 1 (a varies).
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curve.  From Fig. 5 it can be seen that when n and m are fixed, the
parameter a (with a unit of kPa) is closely related to the air-entry
value.  In general, the value for the parameter a would be higher
than the air-entry value.  However, for small values of m, the air-
entry value can be used for parameter a.

Figure 6 indicates that parameter n controls the slope of the
soil-water characteristic curve.  The distribution given by Eq. [30]
attains its maximum value approximately at the value of a. There-
fore, the point (a, θ (a)) can be used to approximate the inflection
point.  Using this information, a graphical estimation for the three
parameters can be obtained from the soil-water characteristic curve.
First, locate the inflection point (ψ

i
, θ

i
) on the soil-water charac-

teristic plot and draw a tangent line through this point (Fig. 8).

Let s denote the slope of the tangent line.  Then, the three param-
eters a, n, and m are determined as follows:

[32] a i=ψ

[33] m s

i

=






367. ln

θ
θ

[34] n
m

s
m

s
i=

+131
372

1.
.

θ
ψ

The slope, s, of the tangent line can be calculated as:

[35] s i

p i

=
−

θ
ψ ψ

whereψ
p
 = intercept of the tangent line and the matric suction

axis (Fig. 8).
Small values of m result in a moderate slope in the high-suc-

tion range, and large values of n produce a sharp corner near the
air-entry value (see Fig. 9).  Another example of a best-fit curve to
the experimental data for a silty loam from Brooks and Corey
(1964) is shown in Fig. 10.

In Eq. [31], θ becomes equal to θ
s
 when the suction is zero,

and θ becomes zero when the suction goes to infinity.  It is also
possible to use the degree of saturation for curve fitting, since the
degree of saturation varies from 0 to 1. Gravimetric water content
can be similarly normalized for curve-fitting purpose.  Three plots
are shown for the same soil (i.e., silty

FIG. 6. Sample plots of [31] with a = 100 and m = 1 (n varies).

FIG. 7. Sample plots of [31] with a = 100 and n = 2 (m varies).

FIG. 8. A sample plot for the graphical solution of the three
parameters (a, n, and m) in [31].

FIG. 9. A best-fit curve to the experimental data of a till
(S. Vanapalli, personal communication, 1993).

FIG. 10. A best-fit curve to the experimental data of a silty loam
(data from Brooks and Corey 1964).
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loam) in Fig. 11, using different ways of representing the water
content of the soil (i.e., degree of saturation, volumetric water
content, and gravimetric water content).

Experimental data have previously shown that the suction of
a soil reaches a maximum value of approximately 106 kPa at zero
water content.  This upper limit can be built into Eq. [31] as fol-
lows:

[36]

[ ]{ }
θ ψ ψ θ

ψ
( , , , ) ( )

ln e ( / )
a n m C

a
s

n
m=

+
where C(ψ) is a correction function defined as

[ ]C r

r

( )
ln( / )

ln ( , , / )
ψ ψ ψ

ψ
= − +

+
+1

1 1 000 000
1

whereψ
r
 = suction corresponding to the residual water content,

θ
r
.

It can be seen that C(l,000,000) is equal to zero.  Therefore,
at the limiting point where ψ is equal to 106 kPa, the water con-
tent, θ, calculated from Eq. [36] is zero.  A sample plot for Eq.
[36] is shown in Fig. 12.  The curve at the low-suction range is not

significantly affected, since the correction function C(ψ) is
approximately equal to 1 at low suctions.

Figure 13 shows a best-fit curve to the experimental data
obtained for a glacial till, using Eq. [31].  A best-fit curve to
the same experimental data using Eq. [36] is shown in Fig.
14.  It can be seen that the modified equation (i.e., Eq. [36])
fits the data better than Eq. [31].  The main difference is that
the curve is forced by C(ψ) to zero at a suction of 106 kPa.

A graphical estimation of the four parameters a, n, m, and
ψ

r
, in Eq. [36] can be obtained from a semilog plot of the

soil-water characteristic curve.  First, determine the suction
corresponding to the residual water content ψ

r
 by locating a

point where the curve starts to drop linearly in the high suc-
tion range (Fig. 15).  Numerical results show that, in most
cases, Eq. [36] gives a satisfactory approximation for ψ

r
 >

1500 kPa.  Its magnitude will generally be in the range of
1500 to 3000 kPa.  Figure 15 uses ψ

r
 equal to 3000 kPa for

illustration purposes.  Next, locate the inflection point (ψ
i
,

θ
i
) on the semilog plot and draw a tangent line through this point

FIG. 11. Best-fit curves to the experimental data of a silty loam usinf three different representations of the water content, i.e., degree
of saturation, volumetric water content, and gravimetric water content (data from Brooks and Corey 1964).

FIG. 12. A sample plot of [36]. FIG. 13. A best-fit curve to the experimental data of a till using
[31] (S. Vanapalli, personal communication, 1993).
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(Fig. 15).  Let s denote the slope of the tangent line on the semilog
plot.  Then, the fitting parameters a, n, and m can be determined
as follows:

[37] a i=ψ

[38] m
Cs i

i

=








367. ln

( )θ ψ
θ

[39] n
mC

s
m

i

=
+131

372
.

( )
. *

!

ψ

where:

[ ]s
s

s

i
m

i r r

*
. ( ) ln ( , , / )

= −
+ +θ

ψ
ψ ψ ψ131 1 1 000 000

The slope, s, of the tangent line can be calculated as follows:

[40] s i

p i

= θ
ψ ψln( / )

where ψ
p
 = intercept of the tangent line on the semilog plot and

the matric suction axis (Fig. 15).
A graphical estimation only gives approximate values for the

parameters.  To obtain a closer fit to experimental data, the three
parameters (a, n, and m) in Eq. [36] can be determined using a least
squares method, if the measured data for θ and ψ are available.
The idea is to choose the three parameters such that the calculated
values from Eq. [36] are as close as possible to the measured val-
ues.  Therefore, the following objective function (i.e., sum of the
squared deviations of the measured data from the calculated data) is
minimized with respect to the three parameters a, n, and m.

[41] [ ]O a m n a m ni i
i

M

( , , ) ( , , , )= −
=
∑ θ θ ψ

1

2

where:

O(a, m, n) is theobjective function,
M is the total number of measurements, and
θ

i
 and ψ

i
are measured values.

FIG. 14. A best-fit curve to the experimental data in Fig. 13
using [36].

FIG. 15. A sample plot for the graphical solution of the four
parameters (a, n, m, and ψ,) in [36].

FIG. 16. A best-fit curve to the experimental data of a sand
(data from Moore 1939).

FIG. 17. A best-fit curve to the experimental data of a sand
(Soil Laboratory data, University of Saskatchewan).

FIG. 18. A best-fit curve to the experimental data of Kidd Creek
tailings (N. Yang, personal communication, 1992).
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This is a non-linear minimization problem.  A curve-fitting
utility CFVIEW was coded based on Eq. [36] and Eq. [41] using a
quasi-Newton method.  The detailed non-linear curve-fitting al-
gorithm is presented in the Appendix.  Best-fit curves for a tail-
ings sand, a silt, and a clay are shown in Figs. 16 to 23.  An arith-
metic scale has been used when the experimental data in the high
suction range are not available.  It can be seen, from these results,
that Eq. [36] can be used to fit the experimental data reasonably
well over the entire suction range of 0 to 106 kPa.

Some applications require an estimation of the residual
water content.  The following slightly different form of Eq. [31]
can be used to estimate the residual water content θ

r
:

[42]

[ ]{ }
θ θ θ θ

ψ
= + −

+
r

s r

n
m

aln e ( / )

Here, θ
r
 and θ

s
 are treated as two additional parameters.  The five

parameters a, n, m, θ
r
, and θ

s
, in Eq. [42] can be systematically

identified through a best-fit analysis on experimental data.

Conclusions

General empirical equations have been proposed to describe
the soil-water characteristic curve.  Each equation has its own
limitations.  A general form of the relationship between water
content and suction was developed based on the pore-size dis-

tribution of the soil.  If the pore-size distribution of a soil can
be obtained or predicted, then the soil-water characteristic curve
is uniquely determined from the proposed general equation.

The analysis in this paper provides not only a theoretical basis
for most of the empirical equations but also proposes a new, more
general equation to describe the soil-water characteristic curve.
Based on the proposed equation, a curve-fitting utility, CFVIEW,
was coded.  It was found that the equation fits experimental data
reasonably well over the entire suction range from 0 to 106 kPa.

FIG. 19. A best-fit curve to the experimental data of a sand
(Soil Laboratory data, University of Saskatchewan). FIG. 21. A best-fit curve to the experimental data of a silt (S.

Huang, personal communication, 1993).

FIG. 20. A best-fit curve to the experimental data of a sand
(University of Toronto data; University of Saskatchewan 1984).

FIG. 22. A best-fit curve to the experimental data of a silt (Soil
Laboratory data, University of Saskatchewan).

FIG. 23. A best-fit curve to the experimental data of an initially
slurried Regina clay (data from Fredlund).
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Appendix:  Nonlinear curve-fitting algorithms for the soil-water characteristic curve

The proposed equation for the soil-water characteristic curve is:

[A1]

[ ]{ }
θ ψ ψ θ

ψ
( , , , ) ( )

ln e ( / )
a n m C

a
s

n
m=

+
Let p = (a, n, m) denote the unknown vector of the three parameters a, n, and m and suppose that measured data
(θ

i
, ψ

i
) (i = 1, 2, ..., M) are available, where M is the number of measurements.  The least squares estimate of p

is the vector p*, which minimizes the following objective function (i.e., sum of the squared deviations of the
measured data from the calculated data).

[A2] [ ]O p O a m n a m ni i
i

M

( ) ( , , ) ( , , , )= = −
=
∑ θ θ ψ 2

1

In other words, the least squares method determines the three parameters such that the calculated values from
Eq. [A1] are as close as possible to the measured values.

A standard requirement of iterative minimization algorithms is that the value of the objective function
decreases monotonically from iteration to iteration.  Let p

i
 be the estimate of p at the beginning of the i th

iteration (p
0
 is the initial guess and, theoretically, it is arbitrary).  The new estimate p

i +1 
 is chosen such that

530CAN. GEOTECH. J. VOL. 31, 1994



O(p
i + 1

) < O(p
i
).  The steepest descent method is one of the easiest methods for minimizing a general nonlinear function of several

variables.  It exploits the fact that from a given starting point a function decreases most rapidly in the direction of the negative gradient
vector evaluated at the starting point.  Let g denote the gradient of O(p) at p

i
.  That is:
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The steepest descent iteration is defined by

[A4] p p gi i+ = −1 α
where α = scalar that determines the length of the step taken in the direction of -g.

From Eq. [A2] it follows that:
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Similarly,

[A6] [ ]∂
∂

θ θ ψ ∂ ψ
∂

O p

n
a n m

O a n m

ni i
i

M
i( ) ( )= − −

=
∑2

1
( , , , )

, , ,

[A7] [ ]∂
∂

θ θ ψ ∂θ ψ
∂

O p

m
a n m

a n m

mi i
i

M
i( ) ( )= − −

=
∑2

1
( , , , )

, , ,

From Eq. [A1], the partial derivatives in Eqs. [A5] to [A7] can be obtained as follows:
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The steepest descent method is not efficient for practical use, since the rate of convergence is slow, especially near the stationary point.
The following quasi-Newton method (Sadler 1975) was used for the curve-fitting program:

[A11] p p A gi i i i+ = −1

where:
g

i
 = gradient of the objective function evaluated at p

i
, and

A
i
 = operative matrix at the i-th iteration.

Equation [A11] becomes the steepest descent method if A
i
 is the identity matrix multiplied by a step length (a scalar).  Denote p

i -1
 - p

i
 by

d
i
 and g

i +1
 - g

i
 by q

i
.  Then A

i
 is updated using the following formula:

[A12] A A
d A q d A q

d A q qi i
i i i i i i

i i i i
+ = + − −

−1

( )( )

( )

Τ

Τ

where the superscript T denotes the transpose of a vector matrix.
A suitable choice for A

0
 is the diagonal matrix defined by:

[A13] a
if i j

if i j
i j

i

i=
=

≠









α
β2

0

,

,
where:
α

i
 = i-th element of the starting vector p

0
,

β
i
 = i-th element of the gradient g

o
 evaluated at the starting vector.

The quasi-Newton method does not require matrix inversion or equivalent, since the sequence A
i
 (i = 0,
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1, 2, ...) converges to the inverse Hessian.  In practice, the objective function is often approximately quadratic near the minimum, so a
second-order convergence can be eventually expected.  However, there is no guarantee that A

i
 remain positive definite, even for a

quadratic function.  The product g
i
Td

i
 should be checked and d

i 
replaced by its negative, if g

i
Td

i
 > 0.  Numerical difficulties may also arise

when the scalar product (d
i
 - A

i
q

i
)Tq

i
 is very small, resulting in unduly large elements in A

i +1
.  One of several possible strategies is to

reinitialize A
i +1

 if the cosine of the angle between (d
i
 - A

i
q

i
) and q

i
 is less than 0.0001.  For a nonquadratic objective function it is

reasonable to adjust the step length so that the objective function is reduced at each iteration.
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