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Equations for the soil-water characteristic curve
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The soil-water characteristic curve can be used to estimate various parameters used to describe unsaturated soil
behaviour. A general equation for the soil-water characteristic curve is proposed. A nonlinear, least-squares compu-
ter prggram is used to determine the best-fit parameters for experimental data presented in the literature. The
equation idased on the assumption that the shape of the soil-water characteristic curve is dependent upon the pore-
sizedistribution of the soil (i.e., the desaturation is a function of the pore-size distribution). The equation has the
form of anintegrated frequency distribution curve. The equation provides a good fit for sand, silt, and clay soils over
the entire suction range from 0 to® k®a.

Key Wordssoil-water characteristic curve, pore-size distribution, nonlinear curve fitting, soil suction, water
content.

La courbe caractéristique sol-eau peut étre utilisée pour estimer divers paramétres décrivant le compotement
d’'un sol non saturé. On propose ici une équation pour cette courbe caractéristique sol-eau. Un programme non
linéaire, par moindres carrés, est utilisé pour déterminer les parameétres qui permettent d’approcher au mieux les
donnéesxpérimentales recueillies dans la littérature. L'équation est basée sur I'hypothése que la forme de la
courbecaractéristique sol-eau dépend de la répartition de la taille des pores du sol (a savoir que la perte de
saturation est une fonction de cette répartition). L'équation a la forme d’'une intégrale de courbe de répartition de
fréquences. Cette équation permet un bon ajustement pour les sols sableux, silteux et argileux sur toute la gamme
des valeurs dsuccion, de 0 a 2&Pa.

Mots clés: courbe caractéristique sol-eau, répartition de la taille des pores, ajustement non linéaire, succion
dans lesol, teneur en eau.

[Traduit par la rédaction]
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Introduction range. This paper proposes a new equation that can be used
do fit laboratory data over the entire soil suction range.
mathematical basis for the equation is described and a
st-fit procedure is outlined to obtain the parameters for
e equation.

A theoretical framework for unsaturated soil mechanic
has been established over the past two decades. The c
stitutive equations for volume change, shear strength. a
flow through unsaturated soil have become generally accept
in geotechnical engineering (Fredlund and Rahardjo 4R93 S
The measurement of soil parameters for the unsaturated soil Definitions
constitutive models, however, remains a demanding labo- The soil-water characteristic curve for a soil is defined
ratory process. For most practical problems, it has beeas the relationship between water content and suction for
found that approximate soil properties are adequate fahe soil (Williams 1982). The water content defines the
analysis (Papagiannakis and Fredlund 1984). Henceiremp amount of water contained within the pores of the soil. In soil
cal procedures to estimate unsaturated soil-parameters wouwddience, volumetric water conte#ft,is most commonly used.
be valuable. In geotechnical engineering practice, gravimetric water con-

Laboratory studies have shown that there is a relationshiggnt,w, which is the ratio of the mass of water to the mass of
between the soil-water characteristic curve for a particular sodolids, is most commonly used. The degree of saturafion,
and the properties of the unsaturated soil (Fredlund anié another term commonly used to indicate the percent-
Rahardjo 199B). For example, it has become an acceptage ofthe voids that are filled with water. The above vari-
able procedure to predict empirically the permeability funcables have also been used in a normalized form where the
tion for an unsaturated soil by using the saturated coeffiwater contents are referenced to a residual water content
cient of permeability and the soil-water characteristic curvor to zero water content).

(Marshall 1958; Mualem 1986; University of Saskatchewan The suction may be either the matric suction (also known
1984). Similar procedures have been suggested for the shee capillary pressure) of the soil (i.e,,- u, whereu, is
strength properties of an unsaturated soil (Fredlund antthe pore-air pressure ang is the pore-water pressure) or
Rahardjo 199B). Since the soil-water characteristic curvetotal suction (i.e., matric plus osmotic suction). At high suc-
is used as the basis for the prediction of other unsaturated; _ ) _
soil parameters, such as the permeability and shear-strenggh 1N€re are several soil terms that are used interchangeably in
funiions. s mportant o e reasonably acourate chajly Heiere The ermindlogy used n e paper s mozeon
acterization of th_e soil-water characteristic curve. . _are used in the geo-environmental, petroleum, and some of the soil

This paper reviews the forms of mathematical equationggience disciplines. Some of these equivalences are as follows:
that have been suggested to characterize the soil-water chgfatric suctiore capillary pressure, air-entry valeadisplace-
acteristic curve. It appears that none of the suggested equaient pressure, and soil-water characteristic cergeiction --
tions accurately fit laboratory data over the entire suctiowolumetic water content curve.
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FIG. 1. Typical soil-water characteristic for a silty soil FIG. 2. Soil-water characteristic curves for sandy soil, a silty

soil, and a clayey soil.

Literature review

tions (i.e., greater than about 1500 kPa), matric suction amdumerous empirical equations have been proposed to

total suction can generally be assumed to be equivalent. simulate the soil-water characteristic curve. Among the ear-
As a result of the different terminologies used, the soilliest is an equation proposed by Brooks and Corey (1964).

water characteristic curves have taken on numerous formH.is in the form of a power-law relationship:

It is suggested that the term soil-water characteristic curve

be used to represent the relationship between volumetric [kpb[]/\

water contentd, and matric suction. Volumetric water ¢ent  [1] @:B—H

test results in the low suction range are often presented v

using an arithmetic scale. Soil-water characteristic curvewhere:

over the entire suction range are often plotted using a loga- © = normalized (or dimensionless) water content (i.e.,

rithmic scale. ©= (6-6)/(6,-0,), whereb_and®, are the saturated
Figure 1 shows a typical plot of a soil-water characteristic and residual  volumetric water contents, respectively),

curve for a silty soil, along with some of its key characteris- { = suction,

tics. The air-entry value of the soil (i.e., bubbling pressure) W, = air-entry value, and

is the matric suction where air starts to enter the largest pores A = pore-size distribution index.

in the soil. The residual water content is the water contenthe degree of saturatiofs, has also been used in place of

where a large suction change is required to remove addihe normalized water content. Equation [1] has been verified

tional water from the soil. This definition is vague and anthrough several studies (Campbell 1974; Clapp and

empirical procedure for its quantification would be useful.Hornberger 1978, Gardnest al. 1970, 197(; Rogowski

A consistent way to define the residual water content is showh971; Williamset al. 1983; McCueret al. 1981).

in Fig. 1. A tangent line is drawn from the inflection point.  The following linear relationship between the logarithm of

The curve in the high-suction range can be approximated byolumetric water content and the logarithm of suction was

another line. The residual water cont@ptcan be approxi- used by Williamset al. (1983) to describe the soil-water

mated as the ordinate of the point at which the two line§haracteristic curve of many soils in Australia.

intersect (Fig. 1). The total suction corresponding to zergy] |n’~/’:ai+b1|n9

water content appears to be essentially the same for all type

: : ; %ere'a andb, = curve-fitting parameters
of soils. A value slightly below ¥0kPa has been experi- w "1 1 gp ' :
mentally supported for a variety of soils (Croney and, McKee and Bumb (1984) suggested an exponential func-

Coleman 1961). This value is also supported by thermod)}ion for the relationship between the normalized water con-
namic considerations (Richards 1965). In other words, thergnt and suction. This has been referred to as the Boltzmann

is a maximum total suction value corresponding to a zer stribution:
relative humidity in any porous medium. [3] O=g ¥ "2V

The main curve shown in Fig. 1 is a desorption curve. Th . _ e

. : 9 P ﬁ_/here.az_andb2 = curve-fitting parameters. _

adsorption curve differs from the desorption curve as a re Equations [1] and [3] have been found to be valid for
sult Of. hysteresis. The gand point of the adsorp_tlon CUVEction values greater than the air-entry value of the soil.
may differ from the starting point of the desorption Curveryo'o o ations are not valid near maximum desaturation or
because of air entrapment in the soil. Both curves have g, 4o |1y saturated conditions. To remedy this condition,
similar form; however, this paper primarily considers theMcKee and Bumb (1987) and Bumb (1987) suggested the fol-

desorptlor] curve. _— . lowing relationship:
Typical soil-water characteristic curves (i.e.,

desorption curves) for different soils are shown in Fig. 2. 1

The saturated water conterX, and the air-entry value or [4] GZW

bubbling pressurey( - u ), generally increase with the plas-

ticity of the soil. Other factors such as stress history alswhere:a, andb, = curve-fitting parameters. This equation

affect the shape of the soil-water characteristic curves. gives a better approximation in the low suction range. The
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equation is not suitable in the high suction range, since thie not suitable as a general form, although it might apply for some
curvedrops exponentially to zero at high suction values. soils over a limited range of suction values.

Equation [1] implies that there is a sharp discontinuity To establish a theoretical basis for the soil-water characteristic
in suction near saturation. Although some coarse-graineclrve, let us consider the pore-size distribution curve for the soil.
sands may have a rapid change in suction at low suctionshe soil may be regarded as a set of interconnected pores that are
most soils, particularly medium and fine textured soilsfrandomly distributed. The pores are characterized by a pore
show a gradual curvature in the air-entry region near satuadius,r, and described by a functidfr), wheref(r) dr is the
ration. A modification of Eq. [1] was suggested by Roger andelative volume of pores of radiugo (r + dr). In other words,
Hornberger (1978) to account for gradual air entry. In the cadér) is the density of pore volume corresponding to radi@snce
where the volumetric water content is referenced to zerf{r) dr is the contribution of the pores of radius (r + dr) that are
water content and the normalized volumetric water contenfijlled with water, the volumetric water content can be expressed as:
O, (i.e.,0/08), is plotted as the abscissa, the general soil- .
water characteristic plot has an inflection point where th¢9] @(R)= i f(r)dr

slope, d/d®, changes from an increasing value to erdas- Rmin
ing value a$d decreases. The inflection point is assigned thevhere:
coordinates @i, y,), and the intervaE)i < O < 1canbe 0 (R) is volumetric water content when all the pores with
described by a parabola: radius less than or equal Roare filled with water, and
_ R is minimum pore radius in the soil.
5] ¢ =-2,(0-b)(©-1) P

wherea, andb, = curve-fitting parameters. The parametersLet R denote the maximum pore radius. Then, for the
a, andb, are obtained by forcing Eq. [5] through the two pointssaturated case:
( i’l]Ji) and (1, 0). The slopes of both Eq. [1] and Eq. [5] are equ?io] Q(Rn )=6
at the inflection point. ax s

Another frequently used form for the relationship betweerThe capillary law states that there is an inverse relationship between
suction and the normalized water content was given bynatric suction and the radius of curvature of the air-water interface.
van Genuchten (1980): In other words, the air-water interface bears an inverse relationship

1 T to the pore size being desaturated at a particular suction:

O
6] © =
] A+ (py)" 5 [11] r:g

wherep, n, andm = three different soil parameters. This form

of the equation gives more flexibility than the previouswhereC = (2T cosp), a constant, wher€& = surface tension
equations described. In an attempt to obtain a closed-foraf water, andp is angle of contact between water and soil.
expressiorfor hydraulic conductivity, van Genuchten (1980) Two particular suction conditions can be defined as follows:
relatedm andn through the equatiom = (1 - 1h). This,

however, reduces the flexibility of Eq. [6]. More accurate result§12] Y=

can be obtained by leavinm andn parameters with no Ruin
fixed relationship. and
Gardner (1958) proposed an equation for the perme- C

ability function. The equation emulates the soil-water charf13] Veer = R
acteristic curve and can be visualized as a special case of Eq. [6]: ax

1 where:
[7] ®=ﬁ Y .. = the suction value corresponding to the minimum
ay pore radius, and
where: o ) y__ = the air-entry suction value of the soil.
gis a curve-fitting parameter related to the air-entry value ~*
of the soil, and Using the capillary law, Eq. [9] can be expressed in terms of

nis a curve-fitting parameter related to the slope at thgction:
inflection point on the soil-water characteristic curve.

_ "] Ymax C
Theoretical basis for the shape of the soil-water oy )_W£ax f ?hgd @%@Z L{ f ?hﬁhﬁ2 ch

characteristic curve

The equations proposed in the research literature amghereh is variable of integration, representing suction.
empirical in nature. Each equation appears to apply for Bquation [14] is the general form describing the relation-
particular group of soils. There are other equations of slightlghip between volumetric water content and suction. If the
differing forms that could be tested to assess their fit withpore-size distributiorf(r), of a soil is known, the soil-water
experimental data. For example, the soil-water characterigharacteristic curve can be uniquely determined by Eq. [14].
tic curve appears to have the form of the right-hand sid&everal special cases are as follows:
of a normal-distribution curve. Therefore, the following (1) Case of a constant pore size functiorhe pore sizes are
equation can be used to approximate the soil-water charagpiformly distributed, that iff(r) = A, whereA is a constant. It

teristic curve: follows, from Eq. [14] that:

_ _ m Ymax [ [
8] ©=a,™" ns aw)="T" “Cd=acgt- 1 =B-p
wherea,, b, andm = curve-fitting parameters. Equation [8] v h w ¢ Uy
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2°
- < a7V
whereB =AC, a constant, anB = AC/{)__, a constant. erfa(x) /n_[e dy
(2) Case where pore-size function varies inversely?adHor X

the case of(r) = A/r 2, the relationship between volumetric water 2 °
content and suction is: =-erf (X)=1——J'e Y dy
AR C i
__ Wmax _ erfc(x) = complement of the error functiarf(x). Equation
[16] O(y)= i C? ﬁdh— B- Dy [20] describes a symmetrical S-shaped curve. Therefore, if

the pore-size distribution of a soil can be approximated by a

whereB=Al)_/C, a constant, and = A/C, a constant. Equation normal distribution, the soil-water characteristic curve of the
max ', R ; ! . . . . .

[16] represents a linear variation in the pore sizes. In other word®Qi! will be close to a symmetrical S-shaped curve, and Eqg.
there is a linear relationship between volumetric water content aid0] can be used as a model to describe this relationship.
suction. The two fitting parameters (i.e., the mean valueand the

(3) Case where pore-size function varies inverselywss)r  standard deviatiorg) in Eq. [20] are related to the air-entry value
- For the case of(r) = A/r™b, wherem is an integer, the Of the soil and the slope at the inflection point on the soil-water

relationship between volumetric water content and suction igharacteristic curve. If the slope at the inflection poistisd the
™t o alr_-entry value |ﬂ]Jaev, then the standard deviatio@, can be
Ymax .
17 6w)="] A C dh=B-Dy" written as:
v Cm+1 h2
o=—"=
whereB = A(y__)"(mC™), a constant, and = A/((mC™), a con- [21] \2TT S
stant. The power-law relationship (i.e., Eq. [1]) proposed by
Brooks and Corey (1964) is simply a special case of Eq. [17]. land the mean valugl, can be calculated as:
other words, the Brooks and Corey (1964) power-law relationship
is valid only when the pore-size distribution is close to the distri-22 U=y +$
butionf(r) = Alr ™1, [22] aev” oo
To describe the soil-water characteristic curve over the entire
suction range from 0 to 1RPa, volumetric water content is refer- (2) Case of a gamma distribution
enced to zero water content (otherwise, the normalized water con-
tent becomes negativetfis less tha®) ). In this case, the nor- Consider the case of a gamma-type distribution for the function
malized water conter® becomesQ/GS. Equation [14] suggests f(r). That isf(h) takes the following form:
that the following integration form can be used as a general form

a-1-hip
to approximate the soil-water characteristic curve: h’e a,B >0, 0shsw
) 23 f(h)=0pr(a)
(18] O(y)=06_ f(h)dh H 0, elsewhere
b
where: .
wheref(h) is pore-size distribution as a function of suction. r (0{):I hte"dh
Equation [18] will generally produce a non-symmetrical S- 0
shaped curve. Several special cases are as follows. In this case, the soil-water characteristic curve defined by Eq. [18]
(1) Case of a normalldlstrlbqun o . has a smaller air-entry value, a steeper slope near saturation, and a
Let us assume th&h) is a normal distribution. That is: gentler slope near the residual water content. In the special case
1 whend is an integer, the soil-water characteristic curve defined
[19] f(h)y=—= g ()20 by Eq. [18] becomes:
'27‘[ o L ha—le—h/ﬁ
o [24] 0wy o~ dh
wherell = mean value of the distributionfgii), ando = standard 7 BT (a)
deviation of the distribution dth). The soil-water characteristic N
curve defined by Eq. [18] can be expressed as follows: _ 93 hele™dh
20 W)=, T (hyh (@) iy
i at i VI
6, 2 :GSZ w'l i
=S ___ e_yzdy 1= IB
2 ﬁ Ford =1, the gamma distribution becomes an exponential distri-
W-)I20 bution:
. 1 —-h/
6 - e, B>0, 0<h<o
:_Serfca'lj_uH [25] f (h): Dﬁ B
2 20 H 0, elsewhere

where: and the soil-water characteristic curve defined by Eq. [18] can be
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The pore-size distribution of Eq. [6] can be written as follows:

mnp( pp)"™

m+1

where:

g g L (@) T (B) 291 f(y)=
B(a,B)=] I (1-h)*dh= F@p) [1+(py)']

) ) o ) Figure 3 shows a sample probability distribution for Eq. [29] along
In this case, the soil-water characteristic curve given by Eq. [18ljth its integration (i.e., Eq. [6]). It can be seen that the integra-
has greater flexibility. Fol equal tof3, Eq. [18] generates a tjon drops to zero over a narrow suction range. Therefore, Eq. [6]
symmetrical S-shaped curve. Rbgreater thaf3, the curve is s not suitable in the high suction region. Experimental data show
non-symmetrical and has a higher air-entry value, a gentler slopgat after the residual water content, the plot should decrease lin-
near saturation, and a steeper slope near the r_eS|duaI water c@frly to a value of about 1BPa (Croney and Coleman 1961). To
tent. Ford less thar, the curve has a smaller air-entry value, agescribe the soil-water characteristic curve more accurately, the
steeper slope near saturation, and a gentler slope near the res@y%wing distribution is suggested:
water content. In the case wheinand[3 are integers, the soil-

water characteristic curve defined by Eq. [18] and Eq. [27] is re[éo] f (W)= mn(y/a" '
lated to the binomial probability function as follows (Mendenhall n n ™t
et al 1981): P d ( a[e+ (L'U /9) ]{ IOQ{ et (w/ 3) ]}
1 h"’_l(l—h)ﬂ_l Equation [30] and its integration form are shown in Fig. 4 for the
G(Lﬂ):GSJ'idh same set of parameters (i@= 1/, n, m). This distribution func-
(28] v B(a.B) tion drops more slowly than Eg. [29] gkincreases and, there-
a+p fore, EqQ. [30] produces a nonsymmetrical curve that is closer to
-6 -0 +p-1 (1) the experimental data.
s s z i 2') Integrating Eq. [30] using Eq. [18] gives the following rela-
_ = = tionship between volumetric water content and suction:
Equation [28] has a form similar to that of Eq. [5] suggested by
Roger and Homberger (1978), which was used to account for 1 )

gradual air entry. Note, that definimgover the interval (0, 1) [§1] ezes S—_'_ /a) [l

does not restrict its use. The beta density function can be applied n[e (@/a) ]E

to any interval by translation and a change in the scale. Figures 5 to 7 show the effect of varying the three parameters
a, n, andm on the shape of the soil-water characteristic
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Let sdenote the slope of the tangent line. Then, the three param-

‘qc: Inflection point etersa, n, andm are determined as follows:
= »
g o E‘\(Diﬂ ) [32] a=y,
E Slope = H
s T (33] m=367Inel]
5 R ~ e 0
: 131
3 B4 n=""" 372sy,
> mé,
0 20 0O, 40 O, 80 100
Matric suction (kPa) The slopes, of the tangent line can be calculated as:
FIG. 8. A sample plot for the graphical solution of the three _ Bi
parametersg n, andm) in [31]. [35] S=——
lIJ p _wi

curve. From Fig. 5 it can be seen that whamdm are fixed, the  where ) = intercept of the tangent line and the matric suction
parametea (with a unit of kPa) is closely related to the air-entryaxis (Fig. 8).

value. In general, the value for the parametewould be higher Small values ofm result in a moderate slope in the high-suc-
than the air-entry value. However, for small valuesiathe air-  tion range, and large valuesroproduce a sharp corner near the
entry value can be used for parameter air-entry value (see Fig. 9). Another example of a best-fit curve to

Figure 6 indicates that parametecontrols the slope of the the experimental data for a silty loam from Brooks and Corey
soil-water characteristic curve. The distribution given by Eq. [30{1964) is shown in Fig. 10.
attains its maximum value approximately at the value dhere- In Eq. [31],0 becomes equal tﬁs when the suction is zero,
fore, the point4, 6(a)) can be used to approximate the inflectionand® becomes zero when the suction goes to infinity. It is also
point. Using this information, a graphical estimation for the thre@ossible to use the degree of saturation for curve fitting, since the
parameters can be obtained from the soil-water characteristic curdegree of saturation varies from 0 to 1. Gravimetric water content
First, locate the inflection poingy(, 8,) on the soil-water charac- can be similarly normalized for curve-fitting purpose. Three plots
teristic plot and draw a tangent line through this point (Fig. 8)are shown for the same soil (i.e., silty



FREDLUND AND XING 527
1 0 x x I
0O Gravimetric water content (computed
from experimental data)
0.8 . m
R o Volumetric water content (computed
from experimental data)

Degree of saturation (experimental

06 E\Q u data)

0.2
\.\.T.\‘l-—l—-.
0
0 50 100 150 200 250 300 350
Matric suction (kPa)

FIG. 11. Best-fit curves to the experimental data of a silty loam usinf three different representations of the watereqdiemgtee
of saturation, volumetric water content, and gravimetric water content (data from Brooks and Corey 1964).

ol

Water content or degree of saturation

1 10 e el i}
N T TTHE] [T LTI T I
= — Best-ﬁt curve
flé 0.8 a =100 5 0.8 a = 5706 i 0O Experimental data |
8 n =20 % n =0.606 1IN
o) m=1.0 S m=2.617
206 = 0.6
© 0, = 3000 3 -
s - L
o
© 04 @ 0.4]—) Void ratio: 0.474
= S Preconsolidated load: 100 kPa
£ 8 Initial water content: 16.3% H
5 02 0.21— Total density: 1.80 Mg/m? »
zZ ™~ N
T [ A [T ity
0 Tl || 0
1 10 100 1000 10000 100000 1000000 0.1 1 10 100 1000 10000 100000 1000000
Matric suction (kPa) Matric suction (kPa)
FIG. 12. A sample plot of [36]. FIG. 13. A best-fit curve to the experimental data of a till using

[31] (S. Vanapalli, personal communication, 1993).

loam) in Fig. 11, using different ways of representing the water
content of the soil (i.e., degree of saturation, volumetric water
content, and gravimetric water content). P . : : .

Experimental data have previously shown that the suction %gnr'g)fﬁgéfm;caz? ,tosT(;? Ig]v(\e/ :32;?0(:;;0” functiot) is
a soil reaches a maximum value of approximatehkP@ at zero PP y ©d '

N i o Figure 13 shows a best-fit curve to the experimental data
Y(\;a}s_r content. This upper limit can be built into Eq. [31] as fOI'obtained for a glacial till, using Eq. [31]. A best-fit curve to

the same experimental data using Eq. [36] is shown in Fig.

65 14. It can be seen that the modified equation (i.e., Eq. [36])
[36] 6(y,a,nm=qyY) o fits the data better than Eq. [31]. The main difference is that
{'n[e"' W /a) ]} the curve is forced bg({) to zero at a suction of 1@Pa.
whereC({) is a correction function defined as A _graphlcal estimation of Fhe four parameters), m, and
Y, in Eq. [36] can be obtained from a semilog plot of the
Cw)= -In(A+y /y,) 4 soil-water characteristic curve. First, determine the suction
- + corresponding to the residual water contgnby locating a
ln[l (1000 OOO'l,U, )] point where the curve starts to drop linearly in the high suc-

wherd]) = suction corresponding to the residual water contentjon range (Fig. 15). Numerical results show that, in most
. cases, Eq. [36] gives a satisfactory approximationiior
It can be seen th&i(1,000,000) is equal to zero. Therefore, 1500 kPa. Its magnitude will generally be in the range of
at the limiting point wherd)) is equal to 10kPa, the water con- 1500 to 3000 kPa. Figure 15 us@sequal to 3000 kPa for
tent, 0, calculated from Eq. [36] is zero. A sample plot for Eqillustration purposes. Next, locate the inflection poitt, (
[36] is shown in Fig. 12. The curve at the low-suction range is n&) on the semilog plot and draw a tangent line throughpihiist



CAN.GEOTECH. J. VOL. 31, 1994 528

10 i} 1
| WEH% T T 1] Y T T ]
_ — Bestir curve — Best-fit curve
5 0.8 i;327792 ] O Experimental data ||} -g 0.8 \ = Experimental data
© m=0.613 ©
2 06 0, = 3000 206 a = 0.952
: [T | i n -2531
5 S m = 1.525
@ 0.4|—+ Void ratio: 0.474 g 04 0, = 3000
5 Preconsolidated load: 100 kPa 5 r
ol Initial water content: 16.3% I 8
© 0.2[— Total density: 1.80 Mg/m? : 02 §
Moy ™
Ny
oL LI O LI L] ol 0 ~
0.1 1 10 100 1000 10000 100000 1000000 0.1 1 10 100 1000 10000 100000 1000000

Matric suction (kPa) Matric suction (kPa)

FIG. 14. A best-fit curve to the experimental data in Fig. 13 F|G. 17. A bestfit curve to the experimental data of a sand

using [36]. (Soil Laboratory data, University of Saskatchewan).
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FIG. 18. A best-fit curve to the experimental data of Kidd Creek

FIG. 15. A sample plot for the graphical solution of the fourtailings (N. Yang, personal communication, 1992).

parametersa, n, m, andlJ,) in [36].

11_%\ where:
_ 08 a=2773 gr= S _ Y,
o — Best-fit curve n =12.13 m
E \ 0 Experimental data m=0.434 98 131 (L‘Ul + L‘Uf ) In[ I+ ( 1 OOO OOOl,Ur )]
*é 06 \ b = 3000 The slopes, of the tangent line can be calculated as follows:
G 6
g O \E\jﬁjﬁ [40] S= o)
05)) o | ! n(l.U P /l.U|)
) . . .

0.2 wherell) = intercept of the tangent line on the semilog plot and

the matric suction axis (Fig. 15).
0 A graphical estimation only gives approximate values for the

0 4 8 12 16 20

) . parameters. To obtain a closer fit to experimental data, the three
Matric suction (kPa)

parametersa, n, andm) in Eq. [36] can be determined using a least
FIG. 16. A best-fit curve to the experimental data of a sang§quares method, if the measured datebfand ) are available.

(data from Moore 1939). The idea is to choose the three parameters such that the calculated

values from Eq. [36] are as close as possible to the measured val-

(Fig. 15). Lessdenote the slope of the tangent line on the semiloges' Therefore, the following objective function (i.e., sum of the
plot. Then, the fitting parametessn, andm can be determined guared deviations of the measured data from the calculated data) is

as follows: minimized with respect to the three paramegers andm.
[37] a=y, M 2
411 O(dmn=Y [6,-6@W,, amd
[38] m=367|nm575 Cw) -
: E where:
131 O(a, m, n) is theobjective function,
[B39] n="—"--372s* M is the total number of measurements, and

mQy;) 6, andy, are measured values.
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FIG. 19. A best-fit curve to the experimental data of a sand ~ Matric suction (kPa) _
(Soil Laboratory data, University of Saskatchewan). FIG. 21. A best-fit curve to the experimental data of a silt (S.
0.4 | ‘ | Huang, personal communication, 1993).
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FIG. 20. A best-fit curve to the experimental data of a sand FIG. 22. A best-fit curve to the experimental data of a silt (Soil
(University of Toronto data; University of Saskatchewan 1984). Laboratory data, University of Saskatchewan).

1

This is a non-linear minimization problem. A curve-fitting EL
utility CFVIEW was coded based on Eq. [36] and Eq. [41] using a- 0.8 — Bestfit curve I
quasi-Newton method. The detailed non-linear curve-fitting al-2 O Experimental data

gorithm is presented in the Appendix. Best-fit curves for a tail-g 06
ings sand, a silt, and a clay are shown in Figs. 16 to 23. An arithg
metic scale has been used when the experimental data in the high -
suction range are not available. It can be seen, from these resulfs, = 1101
that Eq. [36] can be used to fit the experimental data reasonabfy =0.865
well over the entire suction range of 0 t& kPa. 002 0, = 1000000

Some applications require an estimation of the residual ‘ HHHH ‘ H
water content. Th_e following sll_ghtly different form of Eq. [31] 8_1 ] m 100100010000 1000001000000
can be used to estimate the residual water coﬂ;ent

Matric suction (kPa)
05 _ er FIG. 23. A best-fit curve to the experimental data of an initially
{In[e+(tp / a)n]}m slurried Regina clay (data from Fredlund).

0.4 15150

[42] 6=06, +

Here 0, andB, are treated as two additional parameters. The fivgihytion of the soil. If the pore-size distribution of a soil can
parameters, n, m, 8,, and®, in Eq. [42] can be systematically pe ghtained or predicted, then the soil-water charactecistie

identified through a best-fit analysis on experimental data. is uniquely determined from the proposed general equation.
) The analysis in this paper provides not only a theoretical basis
Conclusions for most of the empirical equations but also proposes a new, more

General empirical equations have been proposed to descripeneral equation to describe the soil-water characteristic curve.
the soil-water characteristic curve. Each equation has its owdased on the proposed equation, a curve-fitting utility, CFVIEW,
limitations. A general form of the relationship between watewas coded. It was found that the equation fits experimental data
content and suction was developed based on the pore-size digasonably well over the entire suction range from 0 t&Ba.
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Appendix: Nonlinear curve-fitting algorithms for the soil-water characteristic curve
The proposed equation for the soil-water characteristic curve is:

0
Al 6(y,a,n,m=CW) : m
{in[e+ @ ray]}
Letp = (a, n, m) denote the unknown vector of the three parametersandmand suppose that measured data
(Gi, Y) (i=1,2,..M)are available, wherd is the number of measurements. The least squares estirpate of

is the vectoip*, which minimizes the following objective function (i.e., sum of the squared deviations of the
measured data from the calculated data).

[A2] O(p)=0(a m r)zi [6,-6W,,am D]Z

=
In other words, the least squares method determines the three parameters such that the calculated values from
Eq. [A1] are as close as possible to the measured values.

A standard requirement of iterative minimization algorithms is that the value of the objective function
decreases monotomcally from iteration to iteration. pheie the estimate qf at the beginning of theth
iteration {, is the initial guess and, theoretically, it is arbltrary) The new estjmates chosen such that
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O(p,,,) <O(p). The steepest descent method is one of the easiest methods for minimizing a general nonlinear function of sev:
variables. It exploits the fact that from a given starting point a function decreases most rapidly in the direction ativbegredjent
vector evaluated at the starting point. getenote the gradient ¥(p) atp,. That is:

@ O(p)O

0.%a

@ O(p)O

D on U

00(p);

Hom |,

The steepest descent iteration is defined by
[A4] P..=R-09

whered = scalar that determines the length of the step taken in the directpn of -
From Eq. [A2] it follows that:

[A3] g=

[AS] m=—2§ [Qi -0(y, ,a,n,m)]w
fJa i=1 da

Similarly,

we) 2P =25 [0 -6y, .anm] 2O W 20D
on i=1 an

[AT7] M=—2§ [Qi -0(y, ,a,n,m)]w
om i=1 am

From Eq. [Al], the partial derivatives in Eqgs. [A5] to [A7] can be obtained as follows:

73] (4’. !a’n’m)_ B | n(‘l’i /a)nfl(L/’i / az)
‘?a _mC(L)Ui)es{ln[e-*_ (L)U| / a) ]} e+ (l,Ul /a)n
26 (¢, ,a,n,m) _ (@ /3)" In(y, 1 &)
ipey AR = ma, e {infer @, 1y  Ja)

-Cw)8.{infe+ w, ray]} "in{ife+ @, /ay]}

The steepest descent method is not efficient for practical use, since the rate of convergence is slow, especiallyinearypostat
The following quasi-Newton method (Sadler 1975) was used for the curve-fitting program:

[A11] B..=R - A

where:
gi = gradient of the objective function evaluateg aand
A = operative matrix at theeth iteration.
Equation [A11] becomes the steepest descent methoid ithe identity matrix multiplied by a step length (a scalar). Denotep, by
d andg ,, - g byq. ThenA is updated using the foIIowmg formula:

_ad-Ag)d- Ag)'
Al2 =
AT AT g

where the superscriptdenotes the transpose of a vector matrix.
A suitable choice foA is the diagonal matrix defined by:

a;
[A13] &, = %2& ’

D, ifi#]

[A8]

(a1 99 Wnanm _
om

if i =]

where:

a. = i-th element of the starting vec

Bi =i-th element of the gradient gvaluated at the starting vector.

The quasi-Newton method does not require matrix inversion or equivalent, since the ség(ien0g
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1, 2, ...) converges to the inverse Hessian. In practice, the objective function is often approximately quadratic néauthesoia
second order convergence can be eventually expected. However, there is no guaraAteertizan positive definite, even for a
quadratic function. The produgtd should be checked alddeplaced by its negative,df'd. > 0. Numerical difficulties may also arise
when the scalar produad, (- Aq)Tq is very small, resultmg in unduly large elements&upl One of several possible strategies is to
reinitialize A |, if the cosine of the angle betweeh { Ag) andgq, is less than 0.0001. For a nonquadratic objective function it is
reasonable to adjust the step length so that the objective function is reduced at each iteration.



