
Importance of soil in the global hydrological cycle

- Soil <u>transforms non-continuous rainfall</u> or snow into a <u>continuous supply of</u> <u>water</u> for plant growth.
- Soil transforms <u>discontinuous</u> precipitation into <u>continuous</u> discharges, i.e., streams and rivers
- without soil: FLOODS!

Gravimetric Moisture Content: Mass wetness

The amount (by wt.) of water contained in a soil sample at a given time. Mass of water relative to the mass of the dry soil

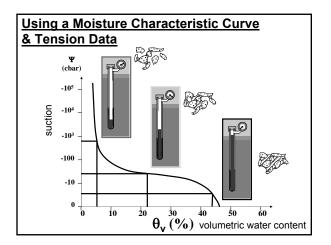
- · Calculated on an OVEN-DRY BASIS:
- $\theta_m = 100^*((wet weight dry weight) / dry weight)$
- · Expressed as a ratio or percentage
- · Example:
 - wet weight 150g, dry weight = 102g: [(150-102)/102]*100 = 47%
 - or [(150-102)/102] = 0.47

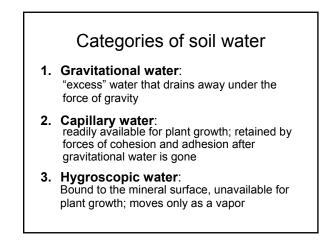
Volumetric Moisture Content: Volume wetness

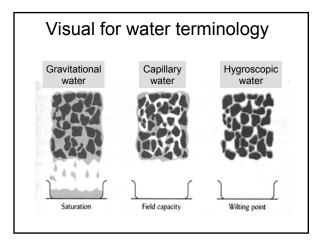
Percentage of the total volume of the soil. At saturation, $\theta = porosity$

The amount (by volume) of water contained in a soil sample at a given time.

Volumetric (θ_v) = Gravimetric (θ_m) * bulk density (D_b)

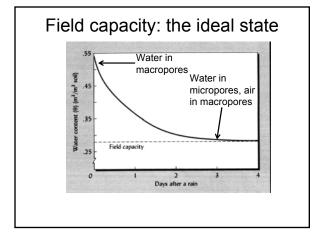

Example: If gravimetric is 47% and D_b is 1.3 g/cm³, 0.47 * 1.3 = 0.61g H₂O/cm³ soil (or 61%)

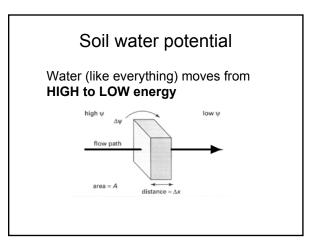

Methods of measuring soil water

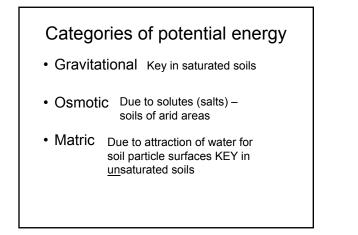

- Gravimetric (lab) weigh, dry, weigh
 Buried porous block (field) –
- measures electrical conductance as block absorbs water
- Time domain reflectometry (TDR; field) measure propagation velocity of electromagnetic pulse
- Neutron probe (field) probe emits fast neutrons, which slow upon collision with water and bounce back to sensor
- Tensiometer (field) tension gauge & cermaic cup

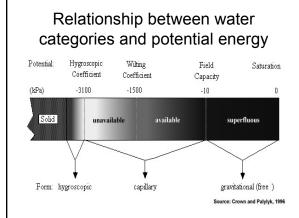
Measuring water content

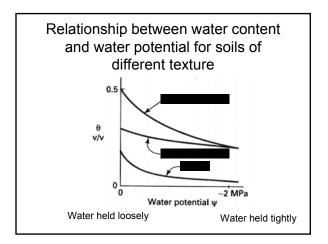
Method	Advantages	Disadvantages	
Gravimetric	Inexpensive	Destructive, tedious	
Buried block	Continuous	Low accuracy	
TDR	Fast, accurate, nondestructive, continuous	Expensive	
Neutron probe	Same as TDR	Expensive, health hazard	
Tensiometer	Inexpensive	Must meas. moist curve for each soil hysteresis errors	

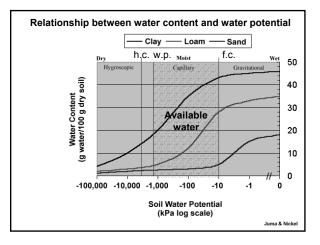

More terms to know

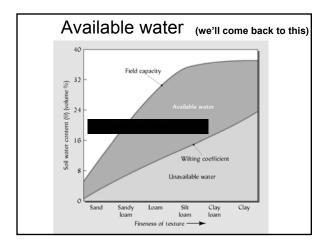

• Field capacity:

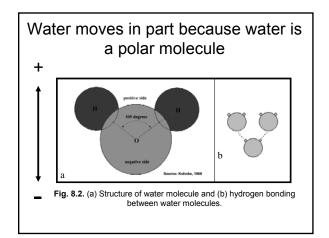

when water has drained from the macropores (2-4 days after saturation event)

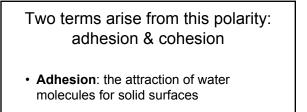

• Wilting point:

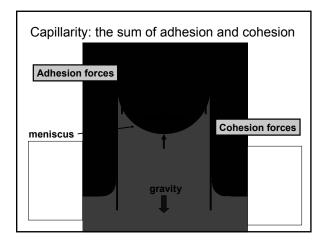

water is there, but held too tightly for the plants to access it

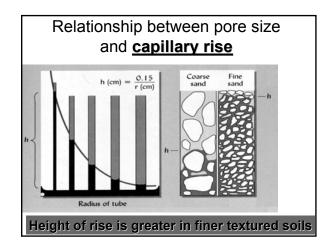


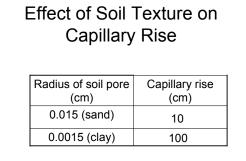


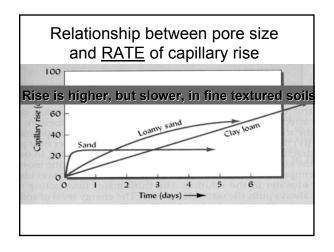









• Cohesion: the attraction of water molecules for each other

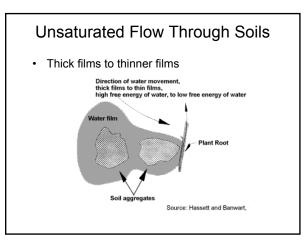

Capillarity and Water Movement

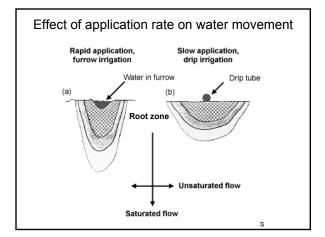
- Soil water exists in small spaces as a film around soil particles
- Small soil pores <u>act as small capillary</u> <u>tubes</u>
- Capillary action holds water in the small pores against the force of gravity
- The smaller the pores, the greater the force of capillarity relative to other forces (i.e. gravity)

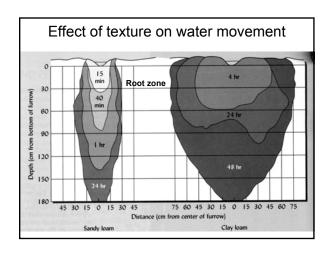
· Capillary rise greatest in fine-textured soils

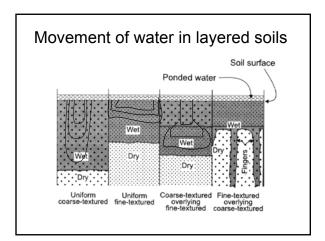
Categories of water movement

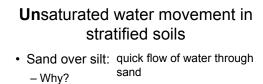
- <u>Saturated flow</u>: The movement of water through a soil that is temporarily saturated. Most of the water moves downwards, though slow lateral movement occurs too.
- <u>Unsaturated flow</u>: The movement of water in soil in which the pores are not filled to capacity with water.
- Vapor movement: hygroscopic water

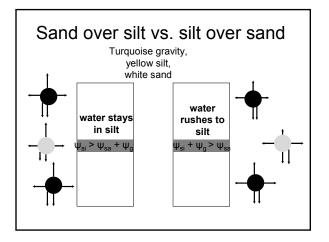

Saturated Flow Through Soils

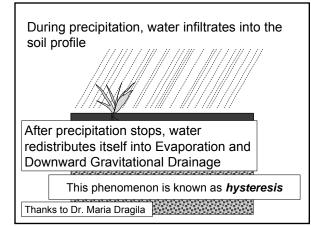

- Saturated flow is the <u>mostly vertical</u> movement of water due to the force of <u>gravity</u> in a soil in which all the pores are <u>completely filled (saturated)</u> with water
- Under these conditions, Ψ (suction) is zero

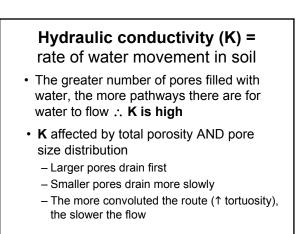

Unsaturated flow in soils

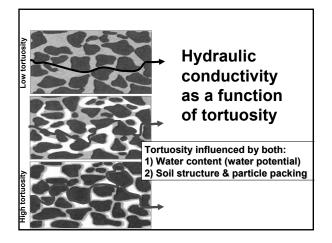

- · Occurs when some pores are air-filled
- Driven by differences in matric potential


 wet →dry or dry → wet fast
 - moist → slightly less (or more) moist slow
 water flows from thick films to thinner films (more ψ (suction) in thin films)



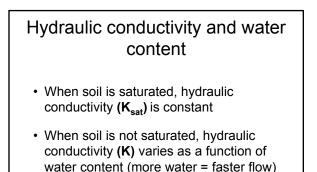

Micropores of silt attract water, but the flow then slows . . .

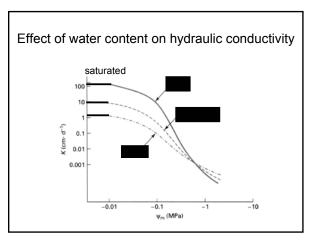

- · Silt over sand: flow is slow!
 - Why? 'cuz sand has less adhesive force, doesn't draw water in

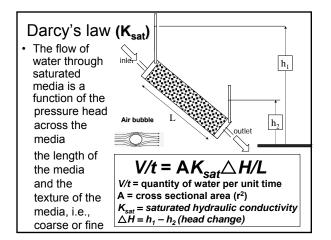


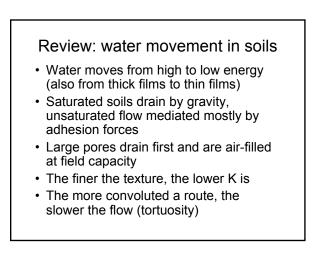
Depth of Wetting:

When water is added to a dry soil, it will wet each layer from its present water content to field capacity and then the excess (gravitational water) will leach and wet lower layers.



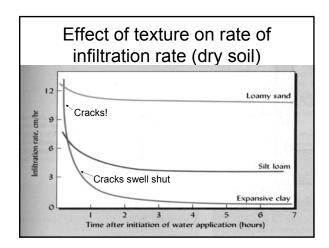


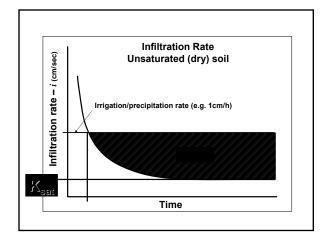

Relationship among **texture**, **bulk density**, **porosity and saturated hydraulic conductivity** (K_{sat}) of soils


Textural Class	Bulk Density (Mg/m ³)	Porosity (%)	Hydraulic Conductivity (K _{sat})
Sand	1.55	42	7.2 - 1.2 cm/min
Loam	1.22	55	1006 mm/h
Clay	1.05	60	0.02 - 9 x 10 ⁻⁴ mm/24hr

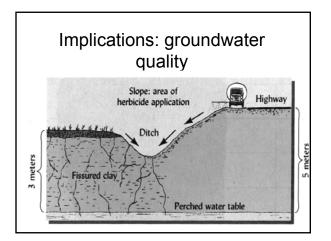
After Hanks and Ashcroft, 1980

Infiltration rate

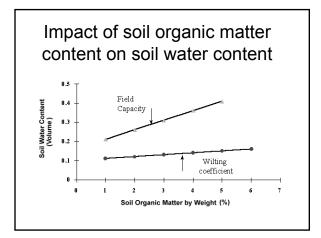

- The rate at which water enters soil surface (distance/time: e.g., cm/sec)
- · Dry soils
 - -rate is variable
 - -flow fast at first (matric forces dominate)
 - <u>then slows</u> to saturated flow rates (K_{sat}) (gravitational force dominates).
- · Saturated soils
 - $-\operatorname{rate}$ is constant (K $_{sat}$) (gravitational force dominates)


Infiltration rate

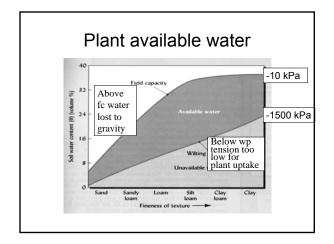
- Rate at which water enters the soil. Affected by:
 - Surface texture, bulk density, O.M. content
 - Subsurface structure (good structure promotes higher permeability)
 - Initial water content (highest when soils already moist)

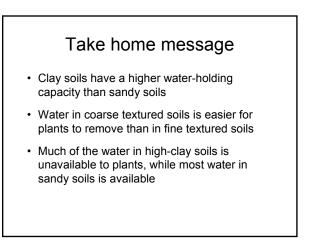

Infilitration rate (cont.)

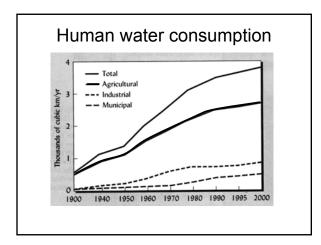
- Presence of forest litter layer (high WHC, breaks impact of raindrops)
- Canopy structure (breaks impact)
- Presence of stones and cobbles (promotes formation of cracks -- 'cuz of differential expansion)
- Microrelief (slows overland flow)



Effects of vegetation and texture on infiltration					
Texture	Vegetated (mm/hr)	Bare soil (mm/hr)			
Loamy sand	50	25			
Loam	25	13			
Clay loam	5	3			
infiltration ~ half as fast in bare soil!!					


Controls on plant-available water


- · How much water is in the soil
- · How tightly that water is held
- Soil organic matter content



capacity and its availability						
Soil	Volume %	Volume % (θ _v)				
	Field capacity	Wilting point	Available water			
	(-10 kPa)	(-1500 kPa)	(col1-col2)			
Sandy Ioam	12	3	9			
Silt loam	30	10	20			
Clay	35	18	17			

Volumetric water content at field

