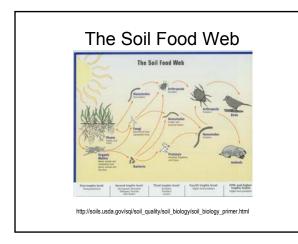
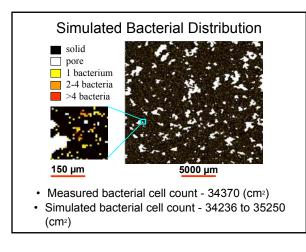

Classification of Soil Organisms

Classification	Body Width	Examples
Microflora	< 10 µm	Bacteria
		Fungi
Microfauna	< 100 µm	Protozoa
		Nematodes
Mesofauna	100 µm to 2 mm	Acari
		Collembola
Macrofauna	2 mm to 20 mm	Earthworms
		Snails



Soil Organism Relationships

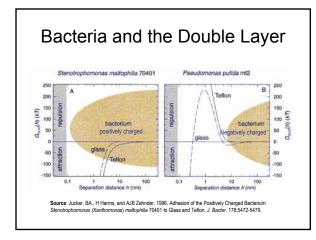
- Mutualistic associations
- Competition
 - Food source
 - Water
 - Antagonistic mechanismsantibiotics
- · Parasitism/Pathogenesis


Biological Diversity

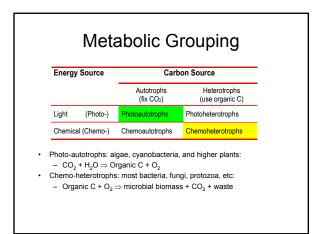
- · Species diversity
- Functional diversity
- Functional redundancy
 - multiple organisms to perform a function.
 - stability: ability to continue to perform.
 - functions under wide variation in conditions or inputs.
 - *resilience*: ability to return to functional health after a disturbance of normal processes.

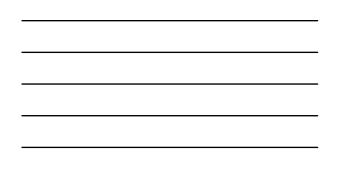
Where Do Organisms Live?

- Around roots: rhizosphere is the narrow region of soil directly around roots.
- In *litter*, particularly fungi.
- On *humus*, only fungi can degrade humus.
- On the *surface of soil aggregates* biological activity is greater than within aggregates.
- In spaces between soil aggregates.

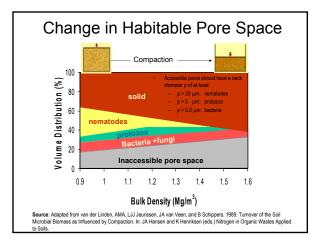

Visualizing Bacteria on Thin Sections

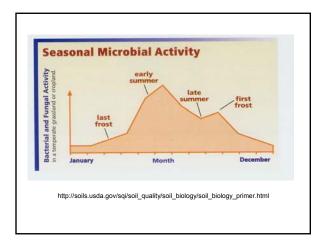




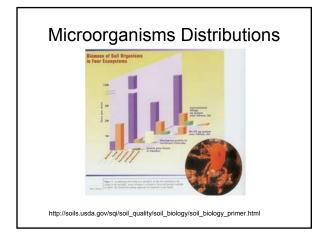

Surface Area And Microorganisms

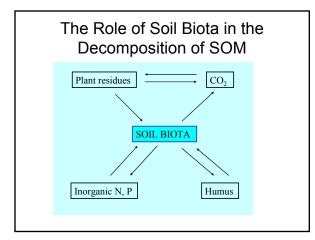
- It is estimated that microorganisms cover less than 1% of the soils total surface area.
- Despite the small coverage, microorganisms are directly related to a variety of ecosystem services whose global value is estimated to be more than \$20T.

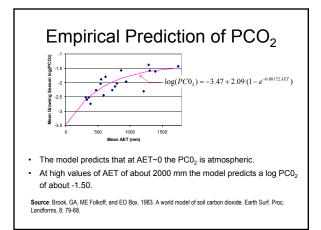


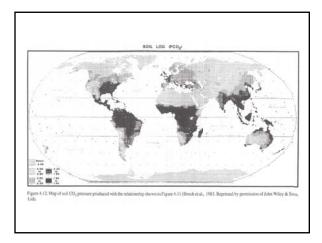


Soil Ecology Soil conditions limit the habitat of microorganisms Temperature (optimal 15-25 °C) Soil water content and potential (optimal: -10 to -70 kPa).


 Soil porosity (mainly pore size: habitable vs. non-habitable pore space).






Concentration of CO₂ in the Soil Atmosphere

- Related to respiration by bacteria, fungi, protozoa and other chemo-heterotrophs.
- Several experiments found that temperature is between 2-5 times more important than water content in determining concentrations of CO₂ in soils.
- An empirical equation relates log (PCO₂) and Actual Evapotranspiration (AET):

Fungi

- Mushrooms, mildews, molds, yeast
- Some form hyphae and mycelia
- 10⁵ 10⁶/g soil
- · Tolerant of acid conditions, aerobic
- Decomposers
 - able to decompose resistant compounds:lignin, cellulose,
- Symbiotic associations
- Pathogens opportunistic
- · Antibiotic production (e.g. penicillin)

Fungal Symbiosis

- *Mycorrhizae* ("fungus-root") associate with plant roots
 - Ecto-mycorrhizae: hyphae grow between root cells and mantle the roots of many trees
 - Endo-mycorrhizae: hyphae grow into root cells
 Vesicular-arbuscular (VAM)
 - trees, agronomic crops, vegetable & fruit crops
- Mycelium growing into soil increases surface area of absorbing tissue
- Improve P and water uptake

Actinomycetes

- · Heterotrophic, aerobic
- Branched hyphae
- 10⁷/g soil
- Tolerates low soil moisture, high temperature
- Intolerant of low pH
- Slow growing
- Decompose cellulose and other resistant compounds
- Symbiotic with many plants
- Antibiotics (e.g. streptomycin)

Bacteria

- Very diverse metabolism
 - Autotrophs and heterotrophs
 - Aerobes, anaerobes, and facultative
- Unicellular ~1 μm
- Most numerous in soil 10⁸ - 10⁹/g soil
- Rapid growth
- Rhizobium/legume symbioses

Metabolic Classes of Bacteria

- Source of Energy: autotrophic or heterotrophic
- Terminal Electron Acceptor
 - Oxygen: Aerobic
 - Other: Anaerobic
 - NO₃⁻, SO₄⁼, Mn⁺⁴, Fe³⁺
 - decomposition products: methane, ethanol, H₂S
 - Either: Facultative Anaerobe

Rhizobial Symbiosis

- *Rhizobia* or *Bradyrhizobia* associate with legumes
- Specificity of infection
- Root nodules contain bacteria
- + N₂ is "fixed", 10 20 g N/m²/y
- Nitrogenase enzyme $N{=}N{\rightarrow}{\rightarrow}2NH_{3}{\rightarrow}{\rightarrow}amino\ acids$
- · N-compounds available to plant
- Rhizobia receive nutrients and organic compounds from plant

Bacterial-Mediated Transformations

Nitrifiers

- oxidation of ammonium: $NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^-$
- Denitrifiers
 - anaerobic reduction of nitrate $NO_3^- \rightarrow N_2O, N$
- N₂ Fixers
 - nitrogen gas reduced into organic forms of nitrogen